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Abstract. We have established the solid–fluid coexistence region for a system of polydisperse
hard spheres with near-Gaussian diameter distributions, as a function of polydispersity.
Significantly, we observe a ‘terminal’ polydispersity above which there can be no fluid–solid
coexistence. At the terminus the polydispersity is 5.7% for the solid and 11.8% for the fluid
while the volume fractions are 0.588 and 0.547 for the solid and fluid respectively. Substantial
fractionation observed at high values of the polydispersity(>5%) implies that the ‘constrained
eutectic’ assumption made in previous theoretical studies is not generally valid. Our results for
the terminal polydispersity are consistent with experiments performed on polydisperse colloidal
suspensions.

Polydispersity in size is an unavoidable feature of colloidal systems, and thus it is of
interest to understand the extent to which polydispersity can influence the behaviour of
these systems. In this work we focus in particular on the crystallization properties of
polydisperse suspensions. The hard-sphere model gives a very good description of colloidal
dispersions that consist of non-charged spherical particles interacting via a steep steric
repulsion [1]. In particular, such colloidal systems, if sufficiently monodisperse in size,
are known to crystallize at densities very close to that predicted by a hard-sphere model
[2]. However, it has been found that size polydispersity can greatly influence the location,
and even the existence, of this transition. Given its simplicity and utility in describing
nearly monodisperse suspensions, it is reasonable to extend the hard-sphere model in an
examination of the effect of size polydispersity on the crystallization transition.

The influence of polydispersity on the solid–fluid transition has been examined with
theory [3–5], molecular simulation [6–8], and experiment [2]. A general conclusion from
all of these studies is the existence of an upper limit on the size polydispersity, above which
no crystallization can occur. We have chosen to call this the ‘terminal polydispersity’ [9]
If the polydispersity is defined as the standard deviation of the size distribution divided by
the mean, then the various studies indicate that the terminal polydispersity is in the range
of 5 to 15 per cent. All of the studies based in theory or molecular simulation invoke
some assumption regarding the distribution of particle diameters between the two phases.
Some studies, but not all [4], assume that the diameter distribution is the same in both
phases. In principle this is incorrect, as phase equilibria in mixtures generally involve some
fractionation, with components of the mixture distributing themselves unevenly between
the phases. The ‘constrained eutectic’ [5] approximation can be justified in the present
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context if one focuses on nearly monodisperse systems, as much of the previous work has
done. In doing so, however, one is left only to examine the influence of polydispersity on
the location of the freezing point. As the presence and degree of fractionation is of some
practical interest, it is worthwhile to attempt a more rigorous treatment that incorporates the
effect. We have also found that the presence of size fractionation can explain some of the
disparity in the values of the terminal polydispersity described above.

This paper summarizes a recent study on the effect of size polydispersity on the freezing
transition of the hard-sphere model [9]. We trace out the phase diagram for increasingly
polydisperse systems, beginning with the well-studied [10, 11] limit of monodisperse hard
spheres. Our approach is based on Monte Carlo simulation in a semi-grand ensemble, with
the Gibbs–Duhem integration technique applied to trace out the coexistence lines [12].

Previous work [13, 14] has established the utility of a semi-grand ensemble in
characterizing and simulating polydisperse mixtures. A simulation in the semi-grand
ensemble has the total number of particles fixed, but the species identity of each particle
is allowed to change, giving rise to a truly continuous distribution. Although the chemical
potentials are imposed in a way similar to the grand canonical ensemble, insertion of particles
is avoided, so the method is suitable for high densities and crystalline phases.

For a system ofN hard spheres with diametersσ distributed according top(σ), the
differential form of the isobaric semi-grand canonical free energyY is

d(βY ) = H dβ + βV dP − N

∫
p(σ)βδ[µ(σ) − µ(σ0)] dσ + βµ(σ0) dN. (1)

Here,µ(σ) is the chemical potential as a function ofσ , σ0 is the diameter of an arbitrarily
chosen reference component, andδ represents a functional differential. Also,H is the
enthalpy,β = 1/kBT is the reciprocal temperature,P is the pressure andV the volume of
the system. The (isobaric) semi-grand canonical potentialY is a function of the independent
variablesT , P and N and it is a functional of the chemical potential difference function
1µ(σ) ≡ µ(σ) − µ(σ0). In a simulation these independent variables must be fixed while
the thermodynamic conjugatesH, V, µ(σ0) andp(σ) are allowed to fluctuate.

In nearly monodisperse systems, it can be expected that the form of the composition
distribution p(σ) will be much like that of the imposed activity-ratio distribution eβ 1µ(σ)

[14]. Our interest in the influence of polydispersity on the hard-sphere fluid–solid transition
led us to consider a quadratic distribution of chemical potential differences [9]

β 1µ(σ) = −(σ − σ0)
2/2ν. (2)

In the limit ν → 0, the pure monodisperseσ0-phase can be recovered. For smallν the
mixture is ideal and the composition will be Gaussian with the peak nearσ0. However,
as ν increases and the distribution of diameters broadens, the mixture departs from ideal
behaviour and the composition can no longer be expected to coincide with the imposed
activity distribution. In this instance we find that the original form taken for the quadratic
loses its relevance, and it becomes appropriate to write a more general form for the (still-
quadratic) distribution

β 1µ(σ) = c2σ
2 + c1σ + c0. (3)

Obviously, equation (2) is recovered by identifyingc2 = −1/2ν, c1 = σ0/ν and c0 =
−σ 2

0 /2ν.
The choice of equation (3) convertsY from a functional of1µ(σ) to a function ofσ0

andν, and the fundamental thermodynamic equation can be written as

d(βY ) = H dβ + βV dP + βµ(σ0) dN − (Nm1/ν) dσ0 − (Nm2/2ν2) dν (4)
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wherem1 andm2 are, respectively, the first and second moments of the composition about
σ0.

In a semi-grand Monte Carlo simulation, particles sample diameters in addition to the
usual sampling of positions within the simulation box. Diameters are sampled by selecting a
particle at random, changing its diameter by a small amount, and accepting with probability
in accord with the Metropolis algorithm. Details may be found in [14]. Evaluation of
the hard-sphere fluid–solid coexistence line as a function of polydispersity can be done
by application of the Gibbs–Duhem integration method recently developed by one of the
authors [12]. The governing differential equation in the present instance is in the space of
P andν [9] (

dP

dν

)
= 1m2

2ν2β 1v
. (5)

We integrate along the coexistence line in the(P, ν) plane by measuring the second moment
m2 of the composition distribution and the molar volumev in both phases and applying
the predictor–corrector scheme described elsewhere [12]. When integrating inν from the
monodisperse limit the method is helped by knowledge of the slope of the coexistence line
at the initial point of the integration. This is not measured in a straightforward fashion,
as the right-hand side of equation (5) is the ratio of quantities that vanish in the limit
of a monodisperse system. Nevertheless, the ratio can be measured via tabulation of
the distribution of particle nearest-neighbour distances in the monodisperse system [9].
Introduction of scaled coordinates and diameter allows (near-) analytical volume integration
which greatly enhances the accuracy of the integration [9].

We performed a Gibbs–Duhem integration in the(P, ν) plane starting with an fcc
solid and a fluid both consisting of 256 particles at the monodisperse hard-sphere freezing
pressure. We evaluated the coexistence line by gradually increasingν from one simulation
to the next while integrating equation (5) to determine the pressure. A surprising result
from the integration is a naturally occurring maximum in the polydispersity parameterν,
which arose as theP –ν curve bent back on itself, followed by a divergence of the pressure
while ν continued back toward zero. This divergence of the pressure is perplexing until one
realizes that the system is not returning to the monodisperse limit with the decrease inν.
Instead in this ‘infinite-pressure’ limit one finds that the particle diameters are vanishing as
the integration proceeds, and that all quantities need to be rescaled by a length characteristic
of the particle sizes in order for everything to remain well behaved. The parameterσ0 loses
all significance as a characteristic length in this limit. In its place we find that the group
ν/σ0 arises as the only important characteristic length (other than that associated with the
pressure,(βP )1/3). All quantities, when scaled by this group, become finite in the ‘infinite-
pressure’ limit. In equation (3), this group is identified as the reciprocal ofc1. Choosing
it as our unit of length is equivalent to takingc1 ≡ 1. Importantly, whenc2 is scaled
in accordance with this, we havec2/c

2
1 = −ν/2σ 2

0 , which vanishes whenν → 0 in the
infinite-pressure limit.

Thus the terminal polydispersity that we identified in [9] corresponds to a system that
has a chemical potential distribution described by equation (3), withc1 = 1 andc2 = 0.
This system has a chemical potential distribution that rises unbounded with increasing
particle diameterσ . This means that the imposed distribution is encouraging the particles
to adopt larger diameters. Opposing this is the imposed pressure. The average volume
and particle size distribution adopted by the system will depend only on the ratioβP/c3

1.
Our calculations show that the coexistence pressure at the terminal polydispersityβP/c3

1 is
approximately 0.000 15, while the average diameterσ/c1 adopted by the particles in each
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Figure 1. The phase diagram in the plane of volume fraction and polydispersity. Coexisting
phases are joined by tie-lines, which are not straight because the polydispersity is not an additive
variable. The circles represent the end-points of the coexistence region forβPσ 3

0 → ∞, i.e.,
the terminal polydispersity.

phase is of the order of 50. The distributions of particle diameters in the coexisting phases
at the terminal polydispersity indicate that there is a significant degree of fractionation. The
fluid adopts a wide distribution of smaller particles (on average), while the solid takes on a
relatively narrow distribution of larger ones.

It is convenient to choose a density variableη given in terms of the real volume fraction,
because this is the quantity one measures in experiments. We defineη = Nπ〈σ 3〉/(6V );
note thatη = 0.7405 for monodisperse close-packed spheres. The phase diagram in the
(η, s) plane is shown in figure 1. Because the polydispersity variable is not linearly additive,
the tie-lines are curved. Coexisting fluid and solid hard spheres will mix to density–
polydispersity values given by the lines (the converse is not necessarily true, as there are
many compositions possible for a particulars, and an arbitrary one may not split exactly
to the coexisting phases computed for the diagram). At the terminus the polydispersity is
5.7% for the solid and 11.8% for the fluid while the volume fractions are 0.588 and 0.547
for the solid and fluid respectively.

We emphasize that the choicec1 = 1 made at the terminal polydispersity is done with
no loss of generality in the results. Asc1 and the pressureβP provide the only length
scales, choosingc1 = 1 is like setting the diameters of a system of pure hard spheres equal
to unity, σ = 1. Thus the only way to meaningfully perturb the system from this state is
by introducing another non-zero term in the chemical potential distribution, equation (3).
The least arbitrary choice is to work with non-zeroc2. We will report on the influence of
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non-zeroc2 in a future paper.
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